Основное содержание
Тригонометрия
Course: Тригонометрия > Модуль 2
Урок 10: Да здравствует тау!Использовать π (по-прежнему) ошибочно
Наши расчеты — упрощённые, и потому нельзя верить чужим словам, не проверив факты. Поэтому мы рекомендуем ознакомиться с материалами здесь: http://tauday.com/ и здесь: http://www.math.utah.edu/~palais/pi.html Ссылка на меня: http://vihart.com. Создатели: Vi Hart.
Хотите присоединиться к обсуждению?
Пока нет ни одной записи.
Транскрипция к видео
представьте что мы на уроке математики изучаем тригонометрию и речь у нас пойдет о числе пи и на мой взгляд число пи ошибочно я не хочу сказать что число пи неправильно вычислено отношение длины окружности к диаметру по-прежнему равно 314 и так далее вернее я хочу сказать что использование числа пи это ошибка которую никто не мог исправить на протяжении тысяч лет проблемы с числом пи и днем числа пи тоже что с колумбом и днем колумба христофор колумб был исторической личностью который действительно что-то сделал в своей жизни но все что выучили о нем в школе искажено и преувеличенно он не открыл америку он не открыл что земля круглая и вообще он был весьма неприятным человеком зачем тогда американцы отмечают день колумба с числом питт тоже история в школе вам рассказывали что число пи важнейшие число для окружности и заставляли зубрить множество связанных с ним форму потому что так принято если вы путались в этих формулах вы в этом не виноваты просто пи ошибочное число я покажу что я имею в виду радианы удобный меры углов математики с ними всё должно быть логично но это не так всё портит число пи рассмотрим пример для англичанина число пи и слова пирог звучат одинаково хави если спросить его сколько чисел p он видит на этом рисунке он подумает что речь о пироге и ответит одно и ошибется полный оборот в 360 градусов это 2пи то есть для англичанина 2 пирога что а если спросить его какую часть пирога ему отрезать он может ответить восьмую часть и вы подумаете что он хочет восьмую часть пирога но ошибетесь pin 8 это 1 16 часть пирога вы уже запутались вы наверное скажете тут же все просто вам лишь нужно разделить радианную меру на 2 или умножить на 2 для обратного преобразования поэтому всего-то нужно запомнить в какую из тур нет вы начинаете оправдывать и математика должна быть максимально простой и изящный если вы начнете объяснять англичанину что один и это не один пирог вы столкнетесь с трудностями перевода но вы спросите существует ли более удобный способ для нашего примера есть простой выход как не путать пирог и 2пи можно переопределить пи как 2пи или 1628 и так далее но я не хочу менять значение пи мы так запутаемся еще больше поэтому давайте введем новое обозначение греческую букву то у потому что она похожа на пи тогда полный круг будет равняться одному-то у половина круга половине тау а если вы захотите 16 то и часть пирога вы попросите одну 16-ю то у так гораздо проще вы снова скажите что я ввела некую произвольную величину отмерять радианы стало действительно удобнее но теперь мы замучаемся преобразовывать то успей работая с радианами в привычных формулах это верно но математики часто придумывают новые понятия и смотрят как они вписываются в существующую концепцию так что давайте посмотрим что будет если использовать формулах то у вместо пи на уроках математики вас заставляют запоминать разные формулы и значения чтобы вы могли рисовать подобные графике вы конечно можете каждый раз заново выводить эти значения но куда быстрее их просто запомнить или воспользоваться калькулятором поскольку vpi и радианах легко запутаться с этими жуткими обозначениями мы забываем что же в действительности показывает синусоида это высота точки сдвинутой по единичной окружности на соответствующий угол если неудобно радианы определить вся тригонометрия становится отвратительной но так быть не должно а что если использовать то у начертим синусоиду из точки где то у равно нулю высота точки в этом месте также равна нулю точки tale 4 мы прошли четверть круга высота точки то есть ее y-координата здесь очевидно равна единице и теперь нам не приходится считать в уме что половина пи это на самом деле четверть круга то у пополам половина круга снова ноль три четверти то у три четверти круга минус один полный оборот возвращает нас в ноль и смотрите всё стало логично почему потому что никто не рисует круги при помощи диаметра мы чертим круги зная radius radius это базовая величина определяющая окружность тогда почему же мы определяем длину окружности через ее диаметр гораздо логичнее определять длину окружности через радиус тогда мы получим нашу прекрасную то у есть множество формул и выражений в которых встречается два пи на мой взгляд их просто необходимо упростить да тоу но вы спросите а как же е в степени и пи вы правда хотите испортить эту чудесную формулу превратив ее в е в степени то у пополам конечно нет мне никогда в жизни не поднимется рука на тождество эйлера которые кстати следует из формулы эйлера и она гласит е в степени и тета равно косинуса тета плюс и синус тета давайте подставим то у вместо t то легко запомнить что синус стал то есть полного оборота по единичной окружности равен нулю значит второе слагаемое превращается в 0 косинус полного оборота это x-координата он равен единице смотрите что получается е в степени это у равно единице как вам если я вас не убедила рекомендую прочесть манифест то у майкла хартл а который отвечает на каждую жалобу на сайте талды точка ком спасибо что подписывайтесь на наш канал нам очень важно знать ваше мнение если у вас возникают вопросы касательно данного видеоролика то не стесняйтесь задавать их в комментариях мы с удовольствием на них постараемся ответить